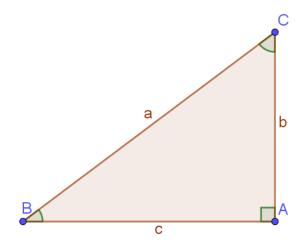
Trigonometria - Resumo

Eduardo Palhares Júnior

2 de junho de 2019

1 Trigonometria

1.1 Razões trigonométricas



$$\begin{cases} \sin \hat{B} = \frac{b}{a} & \cos \hat{B} = \frac{c}{a} \\ \tan \hat{B} = \frac{b}{c} & \cot \hat{B} = \frac{c}{b} \\ \sec \hat{B} = \frac{a}{c} & \csc \hat{B} = \frac{a}{b} \end{cases}$$

Portanto, podemos derivar as seguintes relações

$$\begin{cases} \tan x = \frac{\sin x}{\cos x} & \cot x = \frac{1}{\tan x} \\ \sec x = \frac{1}{\cos x} & \csc x = \frac{1}{\sin x} \end{cases}$$

Tabela 1: Principais relações trigonométricas

	0	$\frac{\pi}{6}$	$rac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$rac{3\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
$\tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∄	0	∄
$\cot x$	∄	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	∄	0
$\sec x$	1	$\frac{2\sqrt{3}}{3}$	$\sqrt{2}$	2	0	-1	0
$\csc x$	0	2	$\sqrt{2}$	$\frac{2\sqrt{3}}{3}$	1	0	-1

1.2 Adição e subtração de arcos

1.2.1 Seno da soma

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

1.2.2 Cosseno da soma

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

1.2.3 Seno da diferença

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

Demonstração

$$\sin(a-b) = \sin(a+(-b))$$
 definição
 $= \sin a \cos(-b) + \sin(-b) \cos a$ seno da soma
 $= \sin a \cos b + (-\sin b) \cos a$ funções par e ímpar
 $= \sin a \cos b - \sin b \cos a$

1.2.4 Cosseno da diferença

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

Demonstração

$$\cos(a-b) = \cos(a+(-b))$$
 definição
 $= \cos a \cos(-b) + \sin a \sin(-b)$ cosseno da soma
 $= \cos a \cos b + \sin a(-\sin b)$ funções par e ímpar
 $= \cos a \cos b - \sin a \sin b$

1.2.5 Seno do duplo arco

$$\sin(2a) = 2\cos a\cos a$$

Demonstração

$$\sin(2a) = \sin(a+a)$$
 definição
= $\sin a \cos a + \sin a \cos a$ seno da soma
= $2\sin a \cos a$

1.2.6 Cosseno do duplo arco

$$\cos(2a) = \cos^2 a - \sin^2 a$$

Demonstração

$$\cos(2a) = \cos(a+a)$$
 definição
 $= \cos a \cos a - \sin a \sin a$ seno da soma
 $= \cos^2 a - \sin^2 a$

1.2.7 Tangente da soma

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Demonstração

$$\tan(a+b) = \frac{\sin(a+b)}{\cos(a+b)}$$
 expanda
$$= \frac{\sin a \cos b + \sin b \cos a}{\cos a \cos b - \sin a \sin b}$$
 divida por cos a.cos b
$$= \frac{\cos a \cos b}{\cos a \cos b - \sin a \sin b}$$
 separe os termos
$$= \frac{\sin a \cos b}{\cos a \cos b} + \frac{\sin b \cos a}{\cos a \cos b}$$
 simplifique
$$= \frac{\sin a \cos b}{\cos a \cos b} - \frac{\sin a \sin b}{\cos a \cos b}$$

$$\vdots$$

$$= \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

1.2.8 Tangente da diferença

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}$$

Demonstração Exercício

1.2.9 Cotangente da soma

$$\cot(a+b) = \frac{\cot a \cot b - 1}{\cot a + \cot b}$$

Demonstração Exercício

1.2.10 Cotangente da diferença

$$\cot(a-b) = \frac{\cot a \cot b + 1}{\cot b - \cot a}$$

Demonstração

$$\tan(a+b) = \frac{\cos(a-b)}{\sin(a-b)}$$
 expanda
$$= \frac{\cos a \cos b + \sin a \sin b}{\sin a \cos b - \sin b \cos a}$$
 divida por sin a.sin b
$$= \frac{\sin a \sin b}{\sin a \cos b - \sin b \cos a}$$
 separe os termos
$$= \frac{\cos a \cos b}{\sin a \sin b} + \frac{\sin a \sin b}{\sin a \sin b}$$
 sin $a \sin b$

$$= \frac{\cos a \cos b}{\sin a \sin b} - \frac{\sin a \sin b}{\sin a \sin b}$$
 simplifique
$$\vdots$$

$$\vdots$$

$$= \frac{\cot a \cot b + 1}{\cot b - \cot a}$$

1.2.11 Funções circulares de 2^a ordem

$$\begin{cases}
\cos 2a = \cos^2 2a - \sin^2 2a \Rightarrow \begin{cases}
\cos 2a = 2\cos^2 a - 1 \\
\cos 2a = 1 - 2\sin^2 a
\end{cases} \Rightarrow \begin{cases}
\cos^2 a = \frac{1 + \cos 2a}{2} \\
\sin^2 a = \frac{1 - \cos 2a}{2}
\end{cases}$$

$$\sin 2a = \sin a \cos a$$

$$\tan 2a = \frac{2\tan a}{1 - \tan^2 a}$$

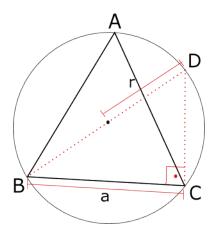
1.2.12 Fórmulas do produto

$$\begin{cases} \sin x \cos y = \frac{1}{2} \left[\sin(x+y) + \sin(x-y) \right] \\ \cos x \cos y = \frac{1}{2} \left[\cos(x+y) + \cos(x-y) \right] \\ \sin x \sin y = \frac{1}{2} \left[\sin(x+y) - \sin(x-y) \right] \end{cases}$$

1.3 Lei dos senos e cossenos

1.3.1 Lei dos senos

Em qualquer triângulo, o quociente entre cada lado e o seno do ângulo oposto é constante e igual à medida do diâmetro da circunferência circunscrita.



Demonstração Os ângulos \hat{A} e \hat{A}' determinam a mesma corda \overline{BC} na circunferência, portanto, são iguais. Dessa forma, o triângulo A'BC é retângulo. Temos então:

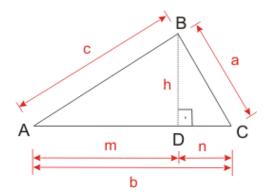
$$\sin \hat{A} = \frac{a}{2r} \Rightarrow 2r = \frac{a}{\sin \hat{A}}$$

Analogamente, temos:

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2r$$

1.3.2 Lei dos cossenos

Em qualquer triângulo, o quadrado de um lado é igual à soma dos quadrados dos outros dois lados menos o duplo produto desses dois lados pelo cosseno do ângulo formado por eles.



Demonstração Utilizando Pitágoras nos triângulos BCD e BAD, temos as seguintes relações

$$\begin{cases} a^2 = n^2 + h^2 \\ c^2 = m^2 + h^2 \end{cases}$$
 (1) (2)

Lembrando que n=b-m, podemos rearranjar 2 e substituir ambos em 1. Dessa forma, teremos:

$$a^{2} = (b - m)^{2} + (c^{2} - m^{2})$$

$$= b^{2} - 2bm + m^{2} + c^{2} - m^{2}$$

$$= b^{2} + c^{2} - 2bm$$

$$\therefore$$

$$a^{2} = b^{2} + c^{2} - 2bc \cos \hat{A}$$

Analogamente, podemos provar que valem as seguintes relações

$$\begin{cases} a^2 = b^2 + c^2 - 2bc \cos \hat{A} \\ b^2 = a^2 + c^2 - 2ac \cos \hat{B} \\ c^2 = a^2 + b^2 - 2ab \cos \hat{C} \end{cases}$$

1.3.3 Teorema interessante

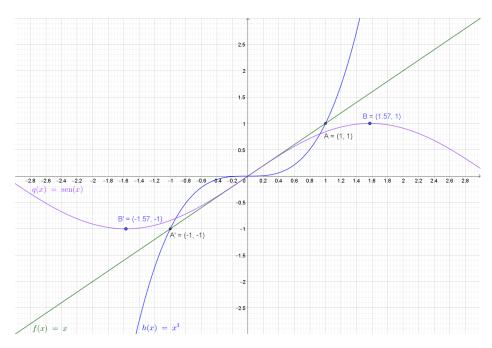
$$\begin{cases} a = b\cos\hat{C} + c\cos\hat{B} \\ b = a\cos\hat{C} + c\cos\hat{A} \\ c = a\cos\hat{B} + b\cos\hat{A} \end{cases}$$

Apêndice - Função par e impar

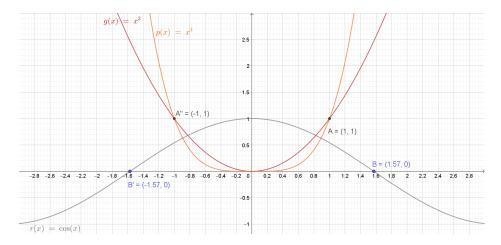
Definição

Seja $E\subseteq\mathbb{R}$ um conjunto com a seguinte propriedade de simetria em relação à origem:

 \bullet Uma função $f:E\longrightarrow \mathbb{R}$ é dita par sef(-x)=f(x)



 $\bullet\,$ Uma função $f:E\longrightarrow\mathbb{R}$ é dita ímpar se f(-x)=-f(x)



A nomenclatura provém do fato que a função $f(x)=x^k$ é impar se k é um número ímpar e par se k é um número par.

Decomposição em funções par e impar

Toda função $f:R \Longrightarrow \mathbb{R}$ definida em um conjunto E simétrico em relação à origem pode ser escrita como a soma de uma função par e uma função ímpar:

$$f(x) = f_i(x) + f_p(x) = \left(\frac{f(x) - f(-x)}{2}\right) + \left(\frac{f(x) + f(-x)}{2}\right)$$

Exemplo Seja $f(x) = e^x$, temos:

$$f(x) = \left(\frac{e^x - e^{-x}}{2}\right) + \left(\frac{e^x + e^{-x}}{2}\right) = \sinh(x) + \cosh(x)$$

Propriedades

- A única função par e ímpar ao mesmo tempo é a função nula (f(x) = 0).
- Há funções que não são nem pares nem ímpares.
- Uma função ímpar definida na origem é nula na origem.
- A soma de duas funções de mesma paridade mantem essa paridade.
- O produto de duas funções de mesma paridade é uma função par.
- O produto de duas funções com paridades distintas é uma função ímpar.
- A derivada de uma função par é uma função ímpar.
- A derivada de uma função ímpar é uma função par.