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Abstract. We investigate the control of angular velocity and altitude of a system composed of a
central hub and a flexible beam crimped to it. The beam rotates around the hub’s axis with the
angle of attack relative to the plane of rotation. The control of altitude and angular velocity is
designed using a nonlinear control law, known as SDRE (State Dependent Riccati Equation).
This law of control is applied to the central hub as a torque. We use two techniques for the
spatial discretization of the system integro partial differential equations of motion. One such
technique is the method of assumed modes and the other is the finite difference method. The
Runge-Kutta method is used to obtain numerically the time evolution of the system governing
equations. The main objective of this work is to study the effect of the spatial discretization
technique in the system time evolution and control. The numerical simulations consider different
values for the angle of attack and for the angular velocities. The difference between the system
time evolution when using finite difference and the assumed modes for spatial discretization
increases when the system non-linearity becomes stronger.

Keywords: nonlinear dynamics, rotating flexible beam, fluid-structure interaction, finite diffe-
rences, assumed modes

CILAMCE 2015
Proceedings of the XXXVI Iberian Latin-American Congress on Computational Methods in Engineering

Ney Augusto Dumont (Editor), ABMEC, Rio de Janeiro, RJ, Brazil, November 22-25, 2015
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1 INTRODUCTION

Studies on the dynamic behavior of flexible structures in rotation represent an area of great
research interest to the worldwide scientific community, as well as for industries that develop
technology, because of the wide range of application of these structures in several areas. The
main objectives of these studies are involved, in general, vibration control, structural design
lighter and faster for various applications projects related to such areas as civil, mechanical,
robotics, aerospace, ocean and many others. We can cite some of the main applications:

• Lightweight robotic manipulators;

• Solar panels or antennas for satellites;

• Helicopter blades or wind turbines.

According to Laks et al. [1], wind power investment worldwide is expected to expand
three-fold in the next decade, from about $18 billion in 2006 to $60 billion in 2016. In the U.S.,
where wind currently only provides about 1% of the nation’s electricity, wind has the potential
to provide up to 20% of the nation’s electricity without major changes to the nation’s electricity
distribution system. Cao et al. [2] suggests that rotorcraft with new types of configuration will
become the more economical, effective and rapid vehicles for air traffic transportation in the
future. Indeed, in an increasingly competitive world, new demands are constantly demanding
more security, flexibility, autonomy and efficiency that are closely related on aspects such as
stability, dynamics and control techniques.

[3] reinforces the advantages of using the method SDRE (State-Dependent Riccati Equa-
tion), because it is easily implemented with a simple computational algorithms as a method of
Euler and Runge-Kutta. According [4] SDRE the computational simplicity of the technique in
conjunction with the current technological advances makes it ideal because it can operate in real
time, as shown by [5] at the non-linear problem reference, by magnetic levitation experiments
[6] in Control drive a missile guided [7], testing control small autonomous helicopters [8], and
control design of large tankers [9].

Fenili et al. (2013) [10] discute that low inherent damping, small natural frequencies, and
extreme light weights are among the common characteristics of these systems which make them
vulnerable to any external or internal disturbances (such as slewing maneuvers with great velo-
cities, impacts, fluid interaction, etc.). Robotic manipulators with such characteristics are easy
to carry out, need smaller actuators and can reach objectives in a greater workspace since they
are thinner and longer than the rigid ones usually used for the same task. In dealing with these
kind of rotating structures, the interaction between the angular displacement, theta , also called
slewing angle, and the flexible structure deflection variable, υ(x, t), can be very important in
some cases, as in high angular speed maneuvers. The inclusion of the drag and lift effects, in
this case, incorporates, although in a simple manner, the interac-tion between the structure and
the surrounding fluid as, for example, the air or the water. This interaction plays an important
role as the fluid dissipates the motion kinetic energy and exe-cutes work on the system that can
significantly alter the control performance and efficiency.
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2 MATHEMATIC MODEL

2.1 The Geometric Model

The geometric model of the dynamic system investigated in this work is presented in figure
1.

Figura 1: Flexible beam clamped in hub.

This system comprises a rigid hub and a flexible beam-like structure in rotation about Z
axis and interacting with a fluid. In this system, the fluid effect on the motion is represented by
the drag force, Fdrag(x, t) and lift L(x,t). These effects are not represented in the figure. The
drag and lift forces, as considered in this work, are functions of the velocities ν(x, t) and θ(t).
The lift is also a function of the velocity h(t). The model for the lift uses strip theory, and no
tridimensional effects are included. In this figure, the inertial axis is represented by XYZ, the
moving axis (attached to the rotating axis and moving with it) is represented by xyz.

2.2 Equation of motion

The government equations can be obtained from the energy method, by applying the Ex-
tended Hamilton principle. For this, is required write the kinetic and potential energy of each
system element, and the virtual work of external forces exerted by the fluid. According to
Palhares (2015) [11], the equations of motion to the problem can be described by
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(mH + ρAl) ḧ+ (mH + ρAl)g + ρA

∫ l

0

v̈ cosαdx =

1

2
ρfc

∫ L

0

{(
[(r + x)θ̇ − v̇ sinα]2 + [v̇ cosα + ḣ]2

)
CL(α)

}
dx

(
IH +

∫ l

0

[
(r + x)2 + v2 sin2 α

]
dx

)
θ̈ + ρA

∫ l

0

[
−v̈(r + x) sinα + 2θ̇v̇v sin2 α

]
dx =

T − 1

2
ρfc sinα

∫ L

0

{(
[(r + x)θ̇ − v̇ sinα]2 + [v̇ cosα + ḣ]2

)
(r + x)CD

}
dx

− θ̈(r + x) sinα + ḧ cosα + v̈ − θ̇2v sin2 α + g cosα +
d2

dx2

(
EI

ρA
v

′′
)

=(
[(r + x)θ̇ − v̇ sinα]2 + [v̇ cosα + ḣ]2

) (
ρfcCL(α) cosα + ρfcCD sin2 α

)

(1)

(2)

(3)

where h represents the displacement of the hub axis, θ represents the angular displacement of
the hub, r represents the radius of the hub, α represents the angle of attack of the beam, ν(x, t)
represents the transversal displacement of the beam, ρ represents the density of the material that
composes the beam, A represents the beam cross section area, l represents the non deflected
length of the beam, E represents the Young’s modulus of the material that composes the beam,
I represents the moment of inertia of the cross-section area of the beam, ρf representing the
density of the fluid, c is the beam cross sectional width (mean chord), CL is the lift coefficient
for the beam cross section and CD representing the nondimensional drag coefficient.

The boundary conditions for the beam are given by


v(0, t) = 0

v
′
(0, t) = 0

v
′′
(L, t) = 0

v
′′′

(L, t) = 0

(4)

(5)

(6)

(7)

3 DISCRETIZATION
For the approximation of integrals, it used the numerical quadrature known as Rule Ex-

tended Simpson, while for the approximation of the time derivatives we use the Runge-Kutta
4th-order method.

For the approximation of the spatial derivatives, we have used two different methodologies,
in order to compare the quality of each of the methods for this class of problems.

3.1 Finite Differences
One way to solve the spatial part of the problem was to use the finite differences method to

transform the partial differential equation in 2N ordinary differential equations.
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dnf

dxn
(xj) ≈ Dn

kfj =
m+k−1∑
l=m

Al
(∆x)n

f(xj + (l − j)∆x), (8)

A centered operator of fourth order using 5 points that has error of order O(h2) was used.
Applying operator D4

5 in equations (1), (2) and (3), we can represent the system by

[M ]



ḧ

θ̈

v̈2

· · ·

v̈N−1

v̈N


+ [K]



h

θ

v2

. . .

vN−1

vN


+



Fh

Fθ

F2

. . .

FN−1

FN


= 0 (9)

where [M ] is a mass matrix



M1,1 = mH +mv

M1,j+1 = ρjAjwj∆x cosα; j = 2, . . . , N

M2,2 = IH +
N∑
j=1

ρjAj(r + (j − 1)∆x)2wj∆x+
N∑
j=1

ρjAjv
2
j sin2 αwj∆x

M2,j+1 = −ρjAj(r + (j − 1)∆x) sinαwj∆x; j = 2, . . . , N

Mj+1,1 = ρjAj cosαwj∆x; j = 2, . . . , N

Mj+1,2 = −ρjAj(r + (j − 1)∆x) sinαwj∆x; j = 2, . . . , N

Mj+1,j+1 = ρjAjwj∆x; j = 2, . . . , N.

(10)
(11)

(12)

(13)
(14)
(15)
(16)

[K] is a stiffness matrix

Ki+1,j+1 =
N∑
j=1

∂

∂vn
(D4

kvm)(EI)jwj∆x; m,n = 2, . . . , N, (17)

and {F} is a force vector
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Fh =mHg +mvg

− 1

2
ρfc

N∑
j=1

{[
θ̇(r + (j − 1)∆x)− v̇j sinα

]2
+
[
v̇j cosα + ḣ

]2}
CL(α)wj∆x

Fθ =
N∑
j=1

{2ρjAjwjvj v̇j} sin2 αθ̇∆x

+
1

2
ρfc

N∑
j=1

{[
θ̇(r + (j − 1)∆x)− v̇j sinα

]2
+
[
v̇j cosα + ḣ

]2}
(r + (j − 1)∆x) sinαCDwj∆x− T

Fl =− ρlAlwl∆x
[
vl sin

2 αθ̇2 − g cosα
]

− 1

2
ρfc

{[
θ̇(r + (l − 1)∆x)− v̇l sinα

]2
+
[
v̇l cosα + ḣ

]2}
(
CL(α) cosα + CD sin2 α

)
wl∆x; l = 2, . . . , N

(18)

(19)

(20)

(21)

3.2 Assumed Modes

Another way to find the spatial solution has been made using the assumed modes method,
that is, assuming that the solution is a product of ordinary functions.

f(x, t) =
n∑
j=1

Φj(x)qj(t) (22)

Was considered only the the first mode of the clamped-free beam. Thus, all equations has
become ordinary differential equations, and the system is similar represented


M11 0 M13

0 M22 M23

M31 M32 M33




ḧ

θ̈

q̈

+


0 0 0

0 0 0

0 0 K33




h

θ

q

+


Fh

Fθ

Fq

 = 0 (23)
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M1,1 = mH +mv

M1,3 =

∫ L

1

ρjAjΦ cosαwj∆x

M2,2 = IH +

∫ L

1

ρjAj(r + (j − 1)∆x)2Φ2wj∆x+

∫ L

1

ρjAjq
2
jΦ

2 sin2 αwj∆x

M2,3 = −
∫ L

1

ρjAj(r + (j − 1)∆x)2Φ2 sinαwj∆x

M3,1 =

∫ L

1

ρjAjΦ cosαwj∆x

M3,2 = −
∫ L

1

ρjAj(r + (j − 1)∆x)2Φ2 sinαwj∆x

M3,3 =

∫ L

1

ρjAjΦ
2wj∆x

(24)

(25)

(26)

(27)

(28)

(29)

(30)

K3,3 =

∫ L

1

ρja
4
1AjΦ (31)



Fh =mHg +mvg

− 1

2
ρfc

∫ L

1

{
θ̇2(r + (j − 1)∆x)2Φ2 − 2θ̇q̇ sinα(r + (j − 1)∆x)Φ2 + q̇2jΦ

2

+ 2q̇ḣ cosαΦ + ḣ2
}
CL(α)wj∆x

Fθ =

∫ L

1

{2ρjAjwjqj q̇j} sin2 αθ̇∆x

+
1

2
ρfc

∫ L

1

{
θ̇2(r + (j − 1)∆x)3Φ3 − 2θ̇q̇ sinα(r + (j − 1)∆x)2Φ3 + q̇2j (r + (j − 1)Φ3

+ 2q̇ḣ cosα(r + (j − 1)∆x)Φ2 + ḣ2(r + (j − 1)∆x)Φ
}

sinαCD(α)wj∆x− T

Fl =−
∫ L

1

ρjAj

[
q sin2 αθ̇2Φ2 − g cosαΦ

]
wj∆x

1

2
ρfc

∫ L

1

{
θ̇2(r + (j − 1)∆x)2Φ3 − 2θ̇q̇ sinα(r + (j − 1)∆x)Φ3 + q̇2jΦ

3+

2q̇ḣ cosαΦ2 + ḣ2Φ
}(

CL(α) cosα + CD(α) sin2 α
)
wj∆x

(32)

(33)

(34)

3.3 The State Space Representation

To apply the Runge-Kutta method is necessary to reduce the 2nd order EDO’s to 1st order.
Thus, it was suggested the following transformation variables:
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x1

x2

x3

x4

x5

x6
...

x2j+1

x2j+2



=



h

ḣ

θ

θ̇

v2

v̇2
...

vj

v̇j



(35)

As the system equations are coupled, it was convenient to perform some operation to di-
sengage the system and facilitate the numerical treatment of the solution. The set of operations
presented below decouples the system, transforming the equations into a state-space represen-
tation



ẋ1

ẋ2
...

ẋ2j−1

ẋ2j


= −



1 0

0 M11

· · ·
0 0

0 M1j

... . . . ...

0 0

0 Mj1

· · ·
1 0

0 Mjj



−1 

0 −1

K11 − F1

x1
0

· · ·
0 0

K1j 0
... . . . ...

0 0

Kj1 − F1

x1
0

· · ·
0 −1

Kjj 0





x1

x2
...

x2j−1

x2j


4 THE STATE-DEPENDENT RICCATI EQUATION (SDRE) CONTROL

The state-dependent Riccati equation (SDRE) approach to nonlinear system control relies
on representing a nonlinear system’s dynamics with state-dependent coefficient matrices that
can be inserted into state-dependent Riccati equations to generate a feedback law. The main
idea of this method is to represent the nonlinear system:

~̇x = A~x+B~u (36)

According to equation (36), for the dynamic system studied in this work, the matrix B is
not state dependent.

The feedback law is given by

u = −R−1(x)BT (x)P (x)x (37)
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where P(x) is obtained from the SDRE

P (x)A(x) + AT (x)P (x) +Q(x)− P (x)B(x)R−1(sx)BT (x)P (x) = 0 (38)

5 NUMERICAL SIMULATION

The values adopted for the parameters and used in the numerical simulations are presented
in Table (1)

Tabela 1: Structure and Fluid constants

Parameter Value Unit

I 1, 2358.10−10 m4

E 2, 1.1011 Pa

g 9, 81 m/s2

ρ 7860 Kg/m3

A 9, 7500.10−5 m2

L 1 m

r 0.1 m

c 0.025 m

ρf 1.184 Kg/m3

CL 2πα -

CD 1.28sinα -

and the initial conditions are presented in Table (2)

Tabela 2: Initial Conditions

Parameter Value Unit

h 0 m

ḣ 0 m/s

θ 100 o

θ̇ 0 rad/s

v(x) −0.0630 cosα m

v̇(x) 0 m/s

For the B controller matrix, R and Q gain matrix are considered
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B =



1 0 1 0 1 0

0 M11 0 M12 0 M13

1 0 1 0 1 0

0 M21 0 M22 0 M23

1 0 1 0 1 0

0 M31 0 M32 0 M33

· · ·

1 0

0 M1j

1 0

0 M2j

1 0

0 M3j

... . . . ...

1 0 1 0 1 0

0 Mj1 0 Mj2 0 Mj3

· · ·
1 0

0 Mjj



−1 

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

· · ·

0 0

0 0

0 0

0 0

0 0

0 0
... . . . ...

0 0 0 0 0 0

0 0 0 0 0 0
· · ·

0 0

0 0


(39)

R = 200



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

· · ·

0 0

0 0

0 0

0 0

0 0

0 0
... . . . ...

0 0 0 0 0 0

0 0 0 0 0 0
· · ·

1 0

0 1



(40)

Q = 1000



100 0 0 0 0 0

0 25 0 0 0 0

0 0 100 0 0 0

0 0 0 1000 0 0

0 0 0 0 5 0

0 0 0 0 0 25000

· · ·

0 0

0 0

0 0

0 0

0 0

0 0
... . . . ...

0 0 0 0 0 0

0 0 0 0 0 0
· · ·

5 0

0 25000



(41)
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The objetive is to control the θ̇ variable because maintaining constant rotation, the lift force
will be constant and the set will hover at a certain altitude.

Figura 2: Angular velocity θ̇ for α = 1o - 50rad/s(continuous) vs 80rad/s(dashed) vs 100rad/s(dash-dot)

Figura 3: Height h for α = 1o - 50rad/s(continuous) vs 80rad/s(dashed) vs 100rad/s(dash-dot)
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The beam used in this model have rectangular thin section in a manner that the aerodynamic
coefficient was approximated by a flat plate. Therefore, the theory used does not allow α > 5o.

Figura 4: Angular velocity θ̇ for α = 5o - 50rad/s(continuous) vs 80rad/s(dashed) vs 100rad/s(dash-dot)

Figura 5: Height h for α = 5o - 50rad/s(continuous) vs 80rad/s(dashed) vs 100rad/s(dash-dot)
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The solution by finite differences gives us the evolution of the all nodes of the beam,

Figura 6: Temporal evolution of the beam

but, for compare with solution by assumed modes, is necessary consider only the last node vN

Figura 7: Node vN deflexion for α = 1o - 50rad/s(continuous) vs 80rad/s(dashed) vs 100rad/s(dash-dot)
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Figura 8: Node vN deflexion for α = 5o - 50rad/s(continuous) vs 80rad/s(dashed) vs 100rad/s(dash-dot)

It is important to realize that α = 5o and θ̇ = 100rad/s, the deflection of the beam is greater
than 20%, so the beam theory linear curve is not a good approximation.

6 CONCLUSION

In this paper we propose a dynamic model of a flexible beam clamped in a hub and under
the influence of aerodynamic forces of drag and lift. This system of equations, while possessing
simplifying assumptions, consider the fundamental physical processes of a dynamic flexible
beam in rotation, considering their interaction with the fluid in which is immersed, where the
drag and lift forces are modeled as potential derivatives forces . The purpose is to develop a
model of fluid-structure interaction that contains the basic physical characteristics of the pro-
blem, but at the same time, can be solved using simple numerical techniques

• The responses obtained from the assumed modes method are overestimated in relation to
finite difference method.

• The error between the two methods grows as we increase the angle of attack and speed,
due to increased nonlinearities.

• For each angle of attack value, exist a minimum speed for lift force balance the weight.

• For cases in which the beam deflection is greater than 20% it is necessary to use nonlinear
beam theory.

The simulations show the robustness of the control SDRE technique, since even when sub-
jected to very significant non-linearity, the system was controlled very efficiently. Although the
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assumed modes method carry many errors in relation to finite differences method, the control
was able to make a stable dynamic even when the errors involved in the approach of the lift and
drag coefficients were extreme, due to the large angle of attack proposed.

For future works will be a system stability analysis, seeking to find optimal gains as well
as working in the transient part of the response, using the Ricatti differential equation. Further-
more, an aerodynamic profile will be proposed in order to replace the flat plate profile, to make
the effects of flow and fluid-structure interaction of a real model. From the estimation of sys-
tem parameters, is expected to find a faithful representation of the dynamics of a rotor and then
apply the proposed control technique in a real prototype.
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