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Summary

● Analyze various indicators and techniques to classify the turning points in the 

Brazilian economic cycle (recession/expansion).
○ Macroeconomic indicators

○ Market Indicators

○ Sentiment Analysis

● Conduct a comparative study of classification and regression techniques to 

predict the breadth of the economic cycle phases.
○ Machine Learning-based approach

○ Econometric Approach
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Methodology
• Data Preparation

• Classification

• Validation
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Methodology

● Data acquisition (Brazilian Central Bank API)

● Indicators selection
○ Data preparation

○ Temporal granularity

○ Units of measurement (percentage variation)

○ Missing data

● Database discretization

● Method selection

● Evaluation of results
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Architecture
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Data acquisition

● Python function

● API imports direct from the Brazilian Central Bank website

def consulta_bc(codigo_bcb, data_inicial, data_final):

url = 'http://api.bcb.gov.br/dados/serie/bcdata.sgs.{}/dados?formato=json'.format(codigo_bcb)

df = pd.read_json(url)

df['data'] = pd.to_datetime(df['data'], dayfirst=True)

periodo = (df['data'] >= data_inicial) & (df['data'] <= data_final)

df = df[periodo]

df.set_index('data', inplace=True)

return df
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Indicators used
Economic 

Variable
Min Median Max Range Mean Std dev Skewness Kurtosis Description

PIB -0,11 0,01 0,10 0,22 0,01 0,04 -0,15 0,01 GDP monthly

IPA -0,02 0,01 0,07 0,09 0,01 0,01 1,37 3,84 Wholesale Price Index-Market

IPEM -0,23 0,00 0,18 0,41 0,00 0,06 -0,10 0,86 Physical Production - Mineral extraction

IPIT -0,25 0,00 0,21 0,46 0,00 0,07 0,00 0,61 Physical Production - Capital goods

IPBC -0,46 0,01 0,40 0,86 0,01 0,11 -0,25 1,79 Physical Production - Intermediate goods

IPBCD -0,81 0,02 1,10 1,91 0,02 0,16 1,15 11,31 Physical Production - Durable goods

IVVV -0,44 0,01 0,51 0,95 0,01 0,12 0,42 1,83
Sales volume index in the retail sector - Vehicles and 

motorcycles, spare parts - Brazil

VVCCL -0,52 0,02 0,63 1,15 0,02 0,16 0,08 1,12
Sales of factory authorized vehicle outlets - Light commercial 

cars sales

VVCC -0,44 0,00 0,85 1,29 0,02 0,17 1,03 3,83 Sales of factory authorized vehicle outlets - Trucks sales

IEF -0,13 0,00 0,12 0,26 0,00 0,05 0,08 0,34 Future expectations index

ICC -0,14 0,00 0,15 0,29 0,00 0,05 0,02 0,74 Consumer confidence index

Spub -0,01 0,01 0,08 0,09 0,01 0,01 1,12 3,22
Credit operations outstanding of financial institutions under 

public control - Total

Spriv -0,02 0,01 0,05 0,07 0,01 0,01 0,28 0,32
Credit operations outstanding of financial institutions under 

private control - Total

M1 -0,09 0,01 0,12 0,22 0,01 0,02 0,98 9,77 Money supply - M1 (working day balance average)

M2 -0,01 0,01 0,06 0,07 0,01 0,01 1,89 5,72 Broad money supply - M2 (end-of-periodo balance)
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Variable correlation
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Units normalization

Introduction Methodology Results Future Works References



Normalized correlation
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Database discretization

● Strategy 1
○ All discretized variables binary (up or down)

● Strategy 2
○ All discretized variables in 3 classes (lateralization, high or fall)

○ Interval based on the average and standard deviation (µ-σ|µ|µ+σ)

● Strategy 3
○ All discreet variables in 5 classes (lateralization, high or strong or weak fall). Interval based on

average and standard deviation.

○ Interval (µ-2σ|µ-σ|µ|µ+σ|µ+2σ) = (2,5%|13,5%|68%|13,5%|2,5%)

○ Interval (µ-1,67σ|µ-0,67σ|µ|µ+0,67σ|µ+1,67σ) = (5%|20%|50%|20%|5%)
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Cross-validation
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Time Series

Cross-validation
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Classification methods

● kNN– K Nearest Neighbors

● NB – Gausian Naive Bayes

● DT – Decision Tree

● RF – Random Forest

● LR – Logistic Regression

● SVC– Support Vector Classification

● NN – Neural Network
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K Nearest Neighbors
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Gaussian Naive Bayes
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Decision Tree
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Random Forest
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Logistic Regression
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Support Vector Machine
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Neural Network
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Evaluation metrics
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Evaluation metrics
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Evaluation metrics
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Results
• Quantity of discretized classes

• Criterion for interval between classes

• Complete base discretization

• Relevant Indicators

• Class interval
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Strategy 1 Objectives

● Discreet all variables at 2 intervals.

● Verify if there was improvement in the classification compared to phase 1:
○ Convergence

○ Accuracy

○ Score-f1

● Reduce explanatory variables

Down Up

x < 0 x > 0
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Complete Binary

Correlation
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Complete Binary

Accuracy

kNN NB DT RF LR SVC NN

Train 78,79% 75,76% 72,73% 72,73% 75,76% 72,73% 72,73%

Test 90,00% 87,14% 80,00% 88,57% 84,29% 88,57% 85,71%

ε 11,21% 11,39% 7,27% 15,84% 8,53% 15,84% 12,99%
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Complete Binary

Score-F1

kNN NB DT RF LR SVC NN

F1 Queda 86,79% 83,02% 73,08% 84,00% 80,70% 85,19% 79,17%

F1 Alta 91,95% 89,66% 84,09% 91,11% 86,75% 90,70% 89,13%
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Restricted Binary

Correlation
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Restricted Binary

Accuracy

kNN NB DT RF LR SVC NN

Train 69,70% 72,73% 75,76% 72,73% 72,73% 75,76% 75,76%

Test 90,00% 87,14% 88,57% 90,00% 87,14% 90,00% 85,71%

ε 20,30% 14,42% 12,81% 17,27% 14,42% 14,24% 9,96%
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Restricted Binary

Score-F1

kNN NB DT RF LR SVC NN

F1 Queda 86,79% 83,64% 84,00% 86,27% 84,21% 85,71% 79,17%

F1 Alta 91,95% 89,41% 91,11% 92,13% 89,16% 92,31% 89,13%
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Strategy 1 Summary

● Compared to the results obtained in phase 1
○ The results were slightly worse in training and better in the test.

○ In phase 2 the results had little variation when repeated.

○ SVC only converged in phase 2.

● Comparing the complete dataset with the restricted
○ There was a little improvement with the restricted dataset, within such a narrow track that can 

be considered statistically insignificant.

○ Although very small, it was achieved with a simpler model, which justifies this approach.

● Test performing better than training
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Strategy 2 Objectives

● Discreet all variables at 3 intervals 
○ The criterion used will be based on the standard deviation

● Analyze the correlation after discretization

● Reduce explanatory variables

Down Lateralization Up

x < µ - σ µ - σ < x < µ + σ x > µ + σ

68% of cases16% of cases 16% of cases
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Strategy 2 Objectives

● Discreet all variables at 3 intervals 
○ The criterion used will be based on the standard deviation

● Analyze the correlation after discretization

● Reduce explanatory variables

Down Lateralization Up

x < µ - σ µ - σ < x < µ + σ x > µ + σ

68% of cases16% of cases 16% of cases
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Complete 3 classes

Correlation
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Complete 3 classes

Accuracy

kNN NB DT RF LR SVC NN

Train 78,79% 84,85% 60,61% 78,79% 81,82% 81,82% 81,82%

Test 81,00% 79,00% 73,00% 83,00% 69,00% 81,00% 84,00%

ε 2,21% -5,85% 12,39% 4,21% -12,82% -0,82% 2,18%
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Complete 3 classes

Score-F1
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Restricted 3 classes

Correlation
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Restricted 3 classes

Accuracy
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Restricted 3 classes

Score-F1
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Strategy 2 Summary

● Compared to the results obtained in phase 1
○ As with the binary case, the results were slightly worse in training and better in the test.

○ There was also greater stability when testing were repeated.

● Comparing the complete dataset with the restricted
○ Similarly to the binary case, improvement can be considered irrelevant.

○ As the model is simpler, the approach is justified.

● Compared to strategy 1
○ There was greater variability in the results, but still quite promising.

○ The greatest difficulty in predicting fall movements is clear.
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Strategy 3 Objectives

● Discreet all variables at 5 intervals 
○ The criterion used will be based on the standard deviation

● Identify outliers (focusing on recession)

● More detailed study of the correlation between the variables

● Reduce explanatory variables

Strong down Modarate down Stability Moderate up Strong up

x < µ - 2σ µ - 2σ < x < µ - σ µ - σ < x < µ + σ µ + σ < x < µ + 2σ x > µ + 2σ

68% of cases13,5% of cases 13,5% of cases2,5% of cases 2,5% of cases
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Probabilities distribution
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Strategy 3 Problems

● The new extreme classes (defined by µ ± 2σ) are extremely rare, making 

learning bad or null.
○ Virtually all methods obtained null score-f1 in the side classes.

○ SVC and NN methods simply did not converge.

● The possible factors that explain this scenario are:
○ Very complex modeling for the proposed phenomenon.

○ Very small historical series, causing unbalanced classes.

○ Excessively rare classes that do not represent the problem well.
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Strategy 4 Objectives

● Correct the proposed interval in strategy 3
○ Increase the interval of outliers

○ Reduce the interval of stability

● More detailed study of the correlation between the variables

● Reduce explanatory variables

Strong down Moderate down Stability Moderate up Strong up

x < µ - 1,67σ µ-1,67σ < x < µ-0,67σ µ-0,67σ < x < µ+0,67σ µ+0,67σ < x < µ+1,67σ x > µ + 1,67σ

50% of cases20% of cases 20% of cases5% of cases 5% of cases
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Probabilities distribution
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Complete 5 classes

Correlation
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Complete 5 classes

Accuracy
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Complete 5 classes

Score-F1
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Restricted 5 classes

Correlation
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Restricted 5 classes

Accuracy
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Restricted 5 classes

Score-F1
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Strategy 4 Summary

● Compared to the results obtained in phase 1
○ Some methods were better and some worse, but high variability shows that there is 

randomness in the results.

○ On average, it surpassed the results of phase 1, but with much less stability.

● Comparing the complete dataset with the restricted
○ The restricted scenario presented much more difficulties in identifying the extreme classes. 

Removed variables may be relevant when considering more complex scenarios.

● Compared to strategy 3
○ There was significant but still unsatisfactory (low and unstable) improvement.

○ More sensitive methods (SVC and NN) still had null F1-Score.
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Training Accuracy
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Testing Accuracy
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F1-Score 2 classes

Complete vs restricted
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F1-Score 3 classes

Complete vs restricted
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F1-Score 5 classes

Complete vs restricted
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F1-Score gain

Complete vs restricted
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Future Works
• Variables inclusion

• Treatment of temporal series

• Discretization intervales

• Calibration of hyperparmeters
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Inclusion of variables

● Ibovespa market value
○ Problem: The data series was discontinued in 2019

○ Solution: It was replaced by the IBrX100 indicator

● Interest rate spread
○ Problem: The series in question does not exist

○ Solution: The series was calculated manually

● Production and Monetary Indicators
○ Problem: Low correlation with GDP

○ Suggestion: Reconstruct them using moving averages

● Other indicators
○ Boletim Focus

○ Commodities
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Discretization ranges
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Hiperparametrization
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